Id3¶
The documentation of the id3 module.
-
class
id3.id3.
Id3Estimator
(max_depth=None, min_samples_split=2, prune=False, gain_ratio=False, min_entropy_decrease=0.0, is_repeating=False)[source]¶ A decision tree estimator for deriving ID3 decision trees.
Parameters: max_depth : int, optional
max depth of features.
min_samples_split : int, optional (default=2)
min samples to split on.
prune : bool, optional (default=False)
set to True to prune the tree.
gain_ratio : bool, optional (default=False)
use gain ratio on split calculations.
is_repeating: bool, optional (default=False)
use repeating features.
Attributes
max_depth (int) min_samples_split (int) prune (bool) gain_ratio (bool) min_entropy_decrease (float) is_repeating (bool) Methods
-
fit
(X, y, check_input=True)[source]¶ Build a decision tree based on samples X and corresponding classifications y.
Parameters: X : array-like or sparse matrix of shape = [n_samples, n_features]
The training input samples.
y : array-like, shape = [n_samples] or [n_samples, n_outputs]
The target values (class labels in classification, real numbers in regression).
check_input : bool (default=True)
check if the input for numerical features
Returns: self : object
Returns self.
Attributes
n_features_ (int) The number of features when fit
is performed.X_encoders_ (list) List of LabelEncoders that transforms input from labels to binary encodings and vice versa. y_encoder_ (LabelEncoder) LabelEncoders that transforms output from labels to binary encodings and vice versa. is_numerical_ (bool array of size [n_features]) Array flagging which features that are asumed to be numerical builder_ (TreeBuilder) Instance of the tree builder tree_ (Tree) Instance of the build tree
-